Learning_BTC&NOSTR

Learning_BTC&NOSTR's avatar
Learning_BTC&NOSTR
npub10yqg...hcl3
สร้างมาเพื่อแชร์เรื่องราวที่ได้ศึกษาจากการเรียนรู้เรื่องของบิตคอยน์และนอสเตอร์ จะพยายามเขียนทุกวันวันละโพสต์เพื่อเป็นการบังคับให้ตัวเองได้ศึกษามันเรื่อย ๆ ทุกวัน ถ้าผิดพลาดตรงไหนรบกวนช่วยแก้ไขกันด้วยนะครับ
เสริมเติมแต่ง เนื้่อหาจาก RightTech ep.4: เรื่อง Bitcoin wallet เนื่องจากพี่อาร์มแนะนำพวกเรื่องของการเลือกแบบตาม platform หรือ OS ไปแล้ว วันนี้ผมมาเติมให้ในส่วนของการเลือกตามวิธีการเก็บ key ครับผม 1. กระเป๋าประเภทสร้างคู่กุญแจแบบอิสระ ก่อนอื่นเรามาทำความเข้าใจกันก่อนดีกว่าว่า bitcoin wallet หรือ กระเป๋าเก็บบิตคอยน์นั้นคืออะไร โดยสิ่งที่คนทั่ว ๆ ไป เรียกว่ากระเป๋าเก็บบิตคอยน์นั้น จริง ๆ แล้วที่เก็บอยู่ภายในนั้นมีเพียงแค่กุญแจเท่านั้น โดยกุญแจเหล่านี้เชื่อมโยงกับบิตคอยน์ที่บันทึกไว้ในบล็อกเชน โดยการพิสูจน์ต่อโหนดบิตคอยน์ว่าคุณควบคุมคีย์ คุณสามารถใช้จ่ายบิตคอยน์ที่เชื่อมโยงได้ ซึ่งแตกต่างกับกระเป๋าเงินที่เราเข้าใจโดยทั่วไปว่าสามารถเก็บเงินสดลงไปในนั้นได้ กระเป๋าเก็บบิตคอยน์โดยทั่วไปนั้นจะมีทั้ง public key เพื่อใช้ในการสร้าง address และ private key สำหรับสร้างลายเซ็นเพื่ออนุมัติการจ่ายบิตคอยน์ หรืออีกประเภทหนึ่งคือประเภทที่มีเฉพาะ public key ในแอพกระเป๋าเก็บบิตคอยน์ โดยเมื่อต้องการใช้บิตคอยน์จะทำงานคู่กับอุปกรณ์ภายนอก เช่น อุปกรณ์ลงลายมือชื่อฮาร์ดแวร์หรือกระเป๋าเงินอื่นในแผนการลงลายมือชื่อหลายรายการ (hardware wallet หรือพวก multisig) เป็นไปได้ที่แอปพลิเคชันกระเป๋าเงินจะสร้างคู่กุญแจของกระเป๋าเงินแต่ละคู่กุญแจอย่างอิสระก่อนที่จะใช้ในภายหลัง ดังที่แสดงในรูปภาพด้านล่างนี้ แอปพลิเคชันกระเป๋าเงินบิตคอยน์ทั้งหมดในยุคแรกทำเช่นนี้ แต่ต้องให้ผู้ใช้สำรองฐานข้อมูลกระเป๋าเงินทุกครั้งที่พวกเขาสร้างและกระจายคู่กุญแจใหม่ ซึ่งอาจเกิดขึ้นบ่อยเท่ากับทุกครั้งที่สร้าง address ใหม่เพื่อรับการชำระเงินใหม่ การล้มเหลวในการสำรองฐานข้อมูลกระเป๋าเงินในเวลาที่เหมาะสมจะทำให้ผู้ใช้สูญเสียการเข้าถึงเงินทุนที่ได้รับจากกุญแจที่ยังไม่ได้สำรอง สำหรับกุญแจที่สร้างอย่างอิสระแต่ละกุญแจ ผู้ใช้จะต้องสำรองประมาณ 32 ไบต์ บวกค่าใช้จ่ายทั่วไป ผู้ใช้และแอปพลิเคชันกระเป๋าเงินบางรายพยายามลดปริมาณข้อมูลที่ต้องสำรองโดยใช้เพียงกุญแจเดียว แม้ว่าจะสามารถทำได้อย่างปลอดภัย แต่ก็ลดความเป็นส่วนตัวของผู้ใช้และบุคคลที่พวกเขาทำธุรกรรมด้วยอย่างมาก บุคคลที่ให้คุณค่ากับความเป็นส่วนตัวของตนเองและเพื่อนร่วมธุรกรรมสร้างคู่กุญแจใหม่สำหรับแต่ละธุรกรรม ซึ่งทำให้เกิดฐานข้อมูลกระเป๋าเงินที่สามารถสำรองได้อย่างสมเหตุสมผลเฉพาะโดยใช้สื่อดิจิทัลเท่านั้น image 2. กระเป๋าเก็บบิตคอยน์ประเภทสร้างกุญแจแบบกำหนดได้ (Deterministic Key) ฟังก์ชันแฮชจะสร้างเอาต์พุตเดิมเสมอเมื่อรับอินพุตเดิม แต่ถ้าอินพุตเปลี่ยนแปลงเพียงเล็กน้อย เอาต์พุตจะแตกต่างกัน หากฟังก์ชันมีความปลอดภัยทางการเข้ารหัส จะไม่มีใครสามารถคาดเดาเอาต์พุตใหม่ได้ เว้นเสียแต่ว่าพวกเขารู้อินพุตใหม่ สิ่งนี้สามารถช่วยให้เราสามารถนำค่าหนึ่งค่าแปลงไปเป็นอีกค่า ยิ่งไปกว่านั้น การใช้ฟังก์ชันแฮชเดิมกับอินพุตเดิม (seed) จะสร้างค่าใหม่ได้: ``` # Collect some entropy (randomness) $ dd if=/dev/random count=1 status=none | sha256sum f1cc3bc03ef51cb43ee7844460fa5049e779e7425a6349c8e89dfbb0fd97bb73 - # Set our seed to the random value $ seed=f1cc3bc03ef51cb43ee7844460fa5049e779e7425a6349c8e89dfbb0fd97bb73 # Deterministically generate derived values $ for i in {0..2} ; do echo "$seed + $i" | sha256sum ; done 50b18e0bd9508310b8f699bad425efdf67d668cb2462b909fdb6b9bd2437beb3 - a965dbcd901a9e3d66af11759e64a58d0ed5c6863e901dfda43adcd5f8c744f3 - 19580c97eb9048599f069472744e51ab2213f687d4720b0efc5bb344d624c3aa - ``` หากใช้ค่าอนุพันธ์เป็น private key ของเรา เราสามารถสร้างคีย์ส่วนตัวเหล่านั้นได้อย่างแน่นอนโดยใช้ seed กับอัลกอริทึมที่เราใช้ก่อนหน้า ผู้ใช้การสร้างกุญแจแบบกำหนดได้สามารถสำรองกุญแจทุกดอกในกระเป๋าเงินของตนโดยเพียงบันทึก seed และการอ้างอิงถึงอัลกอริทึมแบบกำหนดได้ที่พวกเขาใช้ ตัวอย่างเช่น แม้ว่าอลิซมีบิตคอยน์ 1 ล้านที่ได้รับจาก 1 ล้าน address ที่แตกต่างกัน สิ่งที่เธอต้องสำรองเพื่อกู้คืนการเข้าถึงบิตคอยน์เหล่านั้นในภายหลังคือ: ``` f1cc 3bc0 3ef5 1cb4 3ee7 8444 60fa 5049 e779 e742 5a63 49c8 e89d fbb0 fd97 bb73 ``` แผนภาพตรรกะของการสร้างกุญแจแบบกำหนดได้แบบเรียงลำดับขั้นพื้นฐานแสดงในรูปภาพด้านล่างนี้ อย่างไรก็ตาม แอปพลิเคชันกระเป๋าเงินสมัยใหม่มีวิธีที่ชาญฉลาดมากขึ้นในการทำสิ่งนี้ ซึ่งช่วยให้ public key สามารถสร้างแยกจาก private key ที่เกี่ยวข้อง ทำให้เป็นไปได้ที่จะเก็บ private key อย่างปลอดภัยมากกว่า public key image 3. การสร้างกุญแจแบบลำดับชั้นและกำหนดค่าได้ (HD Key Generation - BIP32) วอลเล็ตบิตคอยน์สมัยใหม่ทั้งหมดที่เรารู้จักใช้การสร้างกุญแจแบบลำดับชั้นและกำหนดค่าได้ (HD) เป็นค่าเริ่มต้น มาตรฐานนี้ ซึ่งกำหนดไว้ใน BIP32 ใช้การสร้างกุญแจแบบกำหนดค่าได้และการดึง public child key แบบเลือกได้ ด้วยอัลกอริทึมที่สร้าง tree ของกุญแจ ใน tree นี้ กุญแจใด ๆ สามารถเป็นพ่อแม่ของชุด child key และ child key ใด ๆ ก็สามารถเป็นพ่อแม่ของชุด child key อื่น ไม่มีขีดจำกัดตายตัวในความลึกของ tree โครงสร้าง tree นี้แสดงให้เห็นในวอลเล็ต HD: tree ของกุญแจที่สร้างมาจาก seed เดียว image โครงสร้างแบบ tree สามารถใช้แสดงความหมายทางการจัดการเพิ่มเติม เช่น เมื่อกิ่งย่อยของกุญแจเฉพาะใช้สำหรับรับการชำระเงินขาเข้า และอีกกิ่งหนึ่งใช้สำหรับรับเงินทอนจากการชำระเงินขาออก กิ่งของกุญแจยังสามารถใช้ในบริบทองค์กร โดยจัดสรรกิ่งที่แตกต่างกันให้กับแผนก บริษัทในเครือ หน้าที่เฉพาะ หรือหมวดหมู่การบัญชี เป็นต้น #siamstr #righttech
Compressed Public Keys ในยุคแรก ๆ ของบิตคอยน์นั้น มีเพียงการสร้าง public key แบบ 65 Bytes เท่านั้น แต่ในเวลาต่อมา เหล่านักพัฒนาในยุคหลังได้พบวิธีการสร้าง public key แบบใหม่ที่มีเพียง 33 Bytes และสามารถทำงานร่วมกันกับโหนดทั้งหมดในขณะนั้นได้ จีงไม่จะเป็นต้องเปลี่ยนแปลงกฎหรือโครงสร้างภายในโปรโตคอลของบิตคอยน์ โดย poublic key แบบใหม่ที่มีขนาด 33 Bytes นี้เรียกว่า compressed public key (public key ที่ถูกบีบอัด) และมีการเรียก public key ที่มีขนาด 65 Bytes ว่า uncompressed public key (public key ที่ไม่ถูกบีบอัด) ซึ่งประโยชน์ของ public key ที่เล็กลงนั้น นอกจากจะช่วยให้การส่ง public key ให้ผู้อื่นทำได้ง่ายขึ้นแล้ว ยังช่วยให้ธุรกรรมมีขนาดเล็กลง และช่วยให้สามารถทำการชำระเงินได้มากขึ้นในบล็อกเดียวกัน อย่างที่เราได้เรียนรู้จากเนื้อหาในส่วนของ public key เราได้ทราบว่า public key คือจุด (x, y) บนเส้นโค้งวงรี เนื่องจากเส้นโค้งแสดงฟังก์ชันทางคณิตศาสตร์ จุดบนเส้นโค้งจึงเป็นคำตอบของสมการ ดังนั้นหากเรารู้พิกัด x เราก็สามารถคำนวณพิกัด y ได้โดยแก้สมการ y² mod p = (x³ + 7) mod p นั่นหมายความว่าเราสามารถเก็บเพียงพิกัด x ของ public key โดยละพิกัด y ไว้ ซึ่งช่วยลดขนาดของกุญแจและพื้นที่ที่ต้องใช้เก็บข้อมูลลง 256 บิต การลดขนาดลงเกือบ 50% ในทุกธุรกรรมรวมกันแล้วช่วยประหยัดข้อมูลได้มากมายในระยะยาว! นี่คือ public key ที่ได้ยกเป็นตัวอย่างไว้ก่อนหน้า ``` x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB ``` และนี่คือ public key ที่มีตัวนำหน้า 04 ตามด้วยพิกัด x และ y ในรูปแบบ 04 x y: ``` K = 04F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB ``` uncompressed public key นั้นจะมีตัวนำหน้าเป็น 04 แต่ compressed public key จะมีตัวนำหน้าเป็น 02 หรือ 03 โดยเหตุผลนั้นมาจากสมการ y² mod p = (x³ + 7) mod p เนื่องจากด้านซ้ายของสมการคือ y² คำตอบสำหรับ y จึงเป็นรากที่สอง ซึ่งอาจมีค่าเป็นบวกหรือลบก็ได้ หากมองเชิงภาพ นี่หมายความว่าพิกัด y ที่ได้อาจอยู่เหนือหรือใต้แกน x เราต้องไม่ลืมว่าเส้นโค้งมีความสมมาตร ซึ่งหมายความว่ามันจะสะท้อนเหมือนกระจกโดยแกน x ดังนั้น แม้เราจะละพิกัด y ได้ แต่เราต้องเก็บ เครื่องหมาย ของ y (บวกหรือลบ) หรืออีกนัยหนึ่งคือเราต้องจำว่ามันอยู่เหนือหรือใต้แกน x เพราะแต่ละตำแหน่งแทนจุดที่แตกต่างกันและเป็น public key ที่แตกต่างกัน เมื่อคำนวณเส้นโค้งวงรีในระบบเลขฐานสองบนสนามจำกัดของเลขจำนวนเฉพาะ p พิกัด y จะเป็นเลขคู่หรือเลขคี่ ซึ่งสอดคล้องกับเครื่องหมายบวก/ลบตามที่อธิบายก่อนหน้านี้ ดังนั้น เพื่อแยกความแตกต่างระหว่างค่าที่เป็นไปได้สองค่าของ y เราจึงเก็บ compressed public key ด้วยตัวนำหน้า 02 ถ้า y เป็นเลขคู่ และ 03 ถ้า y เป็นเลขคี่ ซึ่งช่วยให้ซอฟต์แวร์สามารถอนุมานพิกัด y จากพิกัด x และคลายการบีบอัดของ public key ไปยังพิกัดเต็มของจุดได้อย่างถูกต้อง ดังภาพประกอบต่อไปนี้ image นี่คือ public key เดียวกันกับที่ยกตัวอย่างไว้ข้างต้นซึ่งแสดงให้เห็นในรูป compressed public key ที่เก็บใน 264 บิต (66 ตัวอักษรเลขฐานสิบหก) โดยมีตัวนำหน้า 03 ซึ่งบ่งชี้ว่าพิกัด y เป็นเลขคี่: ``` K = 03F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A ``` compressed public key สอดคล้องกับ private key เดียวกันกับ uncompressed public key หมายความว่ามันถูกสร้างจาก private key เดียวกัน แต่อย่างไรก็ตาม มันก็มีส่วนที่แตกต่างจาก uncompressed public key นั้นคือ หากเราแปลง compressed public key เป็น commitment โดยใช้ฟังก์ชัน HASH160 (RIPEMD160(SHA256(K))) มันจะสร้าง commitment ที่แตกต่างจาก uncompressed public key และจะนำไปสู่ bitcoin address ที่แตกต่างกันในที่สุด สิ่งนี้อาจทำให้สับสนเพราะหมายความว่า private key เดียวสามารถสร้าง public key ในสองรูปแบบที่แตกต่างกัน (แบบบีบอัดและแบบไม่บีบอัด) ซึ่งสร้าง bitcoin address ที่แตกต่างกัน compressed public key เป็นค่าเริ่มต้นในซอฟต์แวร์บิตคอยน์เกือบทั้งหมดในปัจจุบัน และถูกกำหนดให้ใช้กับคุณสมบัติใหม่บางอย่างที่เพิ่มในการอัปเกรดโปรโตคอลในภายหลัง อย่างไรก็ตาม ซอฟต์แวร์บางตัวยังคงต้องรองรับ uncompressed public key เช่น แอปพลิเคชันกระเป๋าเงินที่นำเข้า private key จากกระเป๋าเงินเก่า เมื่อกระเป๋าเงินใหม่สแกนบล็อกเชนสำหรับผลลัพธ์และอินพุต P2PKH เก่า มันจำเป็นต้องรู้ว่าควรสแกนกุญแจขนาด 65 ไบต์ (และ commitment ของกุญแจเหล่านั้น) หรือกุญแจขนาด 33 ไบต์ (และ commitment ของกุญแจเหล่านั้น) หากไม่สแกนหาประเภทที่ถูกต้อง อาจทำให้ผู้ใช้ไม่สามารถใช้ยอดคงเหลือทั้งหมดได้ เพื่อแก้ไขปัญหานี้ เมื่อส่งออก private key จากกระเป๋าเงิน WIF ที่ใช้แสดง private key ในกระเป๋าเงินบิตคอยน์รุ่นใหม่จะถูกนำไปใช้แตกต่างกันเล็กน้อยเพื่อบ่งชี้ว่า private key เหล่านี้ถูกใช้ในการสร้าง compressed public key #siamstr #righttech อยากแชร์ไปให้คนที่ไม่ได้อยู่บน Nostr อ่านอย่างงั้นเหรอ !?!?!?!? งั้นทางเราขอแนะนำ:
สรุป เสริม เติมแต่ง เนื้อหาของ RightTech ep.2 และ 3 ตรงที่เกี่ยวการแปลง public key เป็น address Base58check Encoding ระบบคอมพิวเตอร์มีวิธีเขียนตัวเลขยาวๆ ให้สั้นลงโดยใช้ทั้งตัวเลขและตัวอักษรผสมกัน เพื่อใช้พื้นที่น้อยลงอย่างเช่น ระบบเลขฐานสิบ (ปกติที่เราใช้) - ใช้เลข 0-9 เท่านั้น, ระบบเลขฐานสิบหก - ใช้เลข 0-9 และตัวอักษร A-F ตัวอย่าง: เลข 255 ในระบบปกติ เขียนเป็น FF ในระบบเลขฐานสิบหก (สั้นกว่า) หรืออย่างระบบเลขฐานหกสิบสี่ (Base64) - ใช้สัญลักษณ์ถึง 64 ตัว: ตัวอักษรเล็ก (a-z) 26 ตัว, ตัวอักษรใหญ่ (A-Z) 26 ตัว, ตัวเลข (0-9) 10 ตัว, สัญลักษณ์พิเศษอีก 2 ตัว ("+" และ "/") โดยระบบ Base64 นี้ช่วยให้เราส่งไฟล์คอมพิวเตอร์ผ่านข้อความธรรมดาได้ เช่น การส่งรูปภาพผ่านอีเมล โดยใช้พื้นที่น้อยกว่าการเขียนเป็นเลขฐานสิบแบบปกติมาก การเข้ารหัสแบบ Base58 คล้ายกับ Base64 โดยใช้ตัวอักษรพิมพ์ใหญ่ พิมพ์เล็ก และตัวเลข แต่ได้ตัดตัวอักษรบางตัวที่มักถูกเข้าใจผิดว่าเป็นตัวอื่นและอาจดูเหมือนกันเมื่อแสดงในฟอนต์บางประเภทออกไปนั่นคือ เลข 0 (ศูนย์), ตัวอักษร O (ตัว O พิมพ์ใหญ่), ตัวอักษร l (ตัว L พิมพ์เล็ก), ตัวอักษร I (ตัว I พิมพ์ใหญ่), และสัญลักษณ์ "+" และ "/" หรือพูดให้ง่ายขึ้น Base58 คือกลุ่มตัวอักษรพิมพ์เล็ก พิมพ์ใหญ่ และตัวเลข แต่ไม่มีตัวอักษรทั้งสี่ตัว (0, O, l, I) ที่กล่าวถึงข้างต้น ตัวอักษรทั้งหมดที่ใช้ใน Base58 จะแสดงให้เห็นในตัวอักษร Base58 ของบิทคอยน์ Bitcoin’s base58 alphabet ``` 123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz ``` การเพิ่มความปลอดภัยพิเศษเพื่อป้องกันการพิมพ์ผิดหรือข้อผิดพลาดในการคัดลอก base58check ได้รวม รหัสตรวจสอบ (checksum) ที่เข้ารหัสในตัวอักษร base58 เข้าไปด้วย รหัสตรวจสอบนี้คือข้อมูลเพิ่มเติมอีก 4 ไบต์ที่เพิ่มเข้าไปที่ท้ายของข้อมูลที่กำลังถูกเข้ารหัส รหัสตรวจสอบนี้ได้มาจากการแฮชข้อมูลที่ถูกเข้ารหัส และจึงสามารถใช้เพื่อตรวจจับข้อผิดพลาดจากการคัดลอกและการพิมพ์ได้ เมื่อโปรแกรมได้รับรหัส base58check ซอฟต์แวร์ถอดรหัสจะคำนวณรหัสตรวจสอบของข้อมูลและเปรียบเทียบกับรหัสตรวจสอบที่รวมอยู่ในรหัสนั้น การแปลงข้อมูล (ตัวเลข) เป็นรูปแบบ base58check มีขั้นตอนดังนี้: 1. เราเริ่มโดยการเพิ่ม prefix เข้าไปในข้อมูล เรียกว่า "version byte" ซึ่งช่วยให้ระบุประเภทของข้อมูลที่ถูกเข้ารหัสได้ง่าย ตัวอย่างเช่น: prefix ศูนย์ (0x00 ในระบบเลขฐานสิบหก) แสดงว่าข้อมูลควรถูกใช้เป็นการยืนยัน (hash) ในสคริปต์เอาต์พุต legacy P2PKH 2. จากนั้น เราคำนวณ "double-SHA" checksum ซึ่งหมายถึงการใช้อัลกอริทึมแฮช SHA256 สองครั้งกับผลลัพธ์ก่อนหน้า (prefix ต่อกับข้อมูล): ``` checksum = SHA256(SHA256(prefix||data)) ``` 3. จากแฮช 32 ไบต์ที่ได้ (การแฮชซ้อนแฮช) เราเลือกเฉพาะ 4 ไบต์แรก ไบต์ทั้งสี่นี้ทำหน้าที่เป็นรหัสตรวจสอบข้อผิดพลาดหรือ checksum 4. นำ checksum นี้ไปต่อที่ท้ายข้อมูล การเข้ารหัสแบบ base58check คือรูปแบบการเข้ารหัสที่ใช้ base58 พร้อมกับการระบุเวอร์ชันและการตรวจสอบความถูกต้อง เพื่อการเข้ารหัสข้อมูลบิทคอยน์ โดยคุณสามารถดูภาพประกอบด้านล่างเพื่อความเข้าใจเพิ่มเติม image ในบิตคอยน์นั้น นอกจากจะใช้ base58check ในการยืนยัน public key แล้ว ก็ยังมีการใช้ในข้อมูลอื่น ๆ ด้วย เพื่อทำให้ข้อมูลนั้นกะทัดรัด อ่านง่าย และตรวจจับข้อผิดพลาดได้ง่ายด้วยรหัสนำหน้า (version prefix) ในการเข้ารหัสแบบ base58check ถูกใช้เพื่อสร้างรูปแบบที่แยกแยะได้ง่าย ซึ่งเมื่อเข้ารหัสด้วย base58 โดยจะมีตัวอักษรเฉพาะที่จุดเริ่มต้นของข้อมูลที่เข้ารหัส base58check ตัวอักษรเหล่านี้ช่วยให้เราระบุประเภทของข้อมูลที่ถูกเข้ารหัสและวิธีการใช้งานได้ง่าย นี่คือสิ่งที่แยกความแตกต่าง ตัวอย่างเช่น ระหว่าง address บิทคอยน์ที่เข้ารหัส base58check ซึ่งขึ้นต้นด้วยเลข 1 กับรูปแบบการนำเข้า private key (WIF - Wallet Import Format) ที่เข้ารหัส base58check ซึ่งขึ้นต้นด้วยเลข 5 ตัวอย่างของ version prefix สามารถดูได้ตามตารางด้านล่างนี้ image ภาพต่อไปนี้จะทำให้คุณเห็นภาพของกระบวนการแปลง public key ให้เป็น bitcoin address image #siamstr #righttech อยากแชร์ไปให้คนที่ไม่ได้อยู่บน Nostr อ่านอย่างงั้นเหรอ !?!?!?!? งั้นทางเราขอแนะนำ:
สรุป เสริม เติมแต่ง เนื้อหาของ RightTech ep.2 อีกเรื่องนึง # Legacy addresses for P2PKH อย่างที่รู้ ๆ กันว่าในสมัยก่อนการส่งบิตคอยน์ทำได้ด้วยการขอ IP ของปลายทางที่เราต้องการส่ง เพื่อให้โหนดของเราทำการเชื่อมต่อกับโหนดของคนรับเพื่อของ public key แน่นอนว่าการป้อนที่อยู่ IP ของคนที่คุณต้องการจ่ายเงินให้นั้นมีข้อดีหลายประการ แต่ก็มีข้อเสียหลายประการเช่นกัน หนึ่งในข้อเสียที่สำคัญคือผู้รับจำเป็นต้องให้กระเป๋าสตางค์ของพวกเขาออนไลน์ที่ที่อยู่ IP ของพวกเขา และต้องสามารถเข้าถึงได้จากโลกภายนอก ซึ่งสำหรับคนจำนวนมากนั่นไม่ใช่ตัวเลือกที่เป็นไปได้เพราะหากพวกเขา: - ปิดคอมพิวเตอร์ในเวลากลางคืน - แล็ปท็อปของพวกเขาเข้าสู่โหมดสลีป - อยู่หลังไฟร์วอลล์ - หรือกำลังใช้การแปลงที่อยู่เครือข่าย (NAT) โดยบิตคอยน์แก้ปัญหานี้ด้วย ฟังก์ชันแฮช (hash function) ซึ่งเป็นฟังก์ชันที่รับข้อมูลที่อาจมีขนาดใหญ่ นำมาแฮช และให้ผลลัพธ์เป็นข้อมูลขนาดคงที่ ฟังก์ชันแฮชจะผลิตผลลัพธ์เดียวกันเสมอเมื่อได้รับข้อมูลนำเข้าแบบเดียวกัน และฟังก์ชันที่ปลอดภัยจะทำให้เป็นไปไม่ได้ในทางปฏิบัติสำหรับผู้ที่ต้องการเลือกข้อมูลนำเข้าอื่นที่ให้ผลลัพธ์เหมือนกันได้ นั่นทำให้ผลลัพธ์เป็น คำมั่นสัญญา (commitment) ต่อข้อมูลนำเข้า เป็นสัญญาว่าในทางปฏิบัติ มีเพียงข้อมูลนำเข้า x เท่านั้นที่จะให้ผลลัพธ์ X สมมติว่าผมต้องการถามคำถามคุณและให้คำตอบของผมในรูปแบบที่คุณไม่สามารถอ่านได้ทันที สมมติว่าคำถามคือ "ในปีไหนที่ซาโตชิ นาคาโมโตะเริ่มทำงานบนบิทคอยน์?" ผมจะให้การยืนยันคำตอบของผมในรูปแบบของ ผลลัพธ์จากฟังก์ชันแฮช SHA256 ซึ่งเป็นฟังก์ชันที่ใช้บ่อยที่สุดในบิทคอยน์: ``` 94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e ``` ต่อมา หลังจากคุณบอกคำตอบที่คุณเดาสำหรับคำถามนั้น ผมสามารถเปิดเผยคำตอบของผมและพิสูจน์ให้คุณเห็นว่าคำตอบของผม เมื่อใช้เป็นข้อมูลสำหรับฟังก์ชันแฮช จะให้ผลลัพธ์เดียวกันกับที่ผมให้คุณก่อนหน้านี้ ``` $ echo "2007. He said about a year and a half before Oct 2008" | sha256sum 94d7a772612c8f2f2ec609d41f5bd3d04a5aa1dfe3582f04af517d396a302e4e ``` ทีนี้ให้สมมติว่าเราถามบ็อบว่า " public key ของคุณคืออะไร?" บ็อบสามารถใช้ฟังก์ชันแฮชเพื่อให้การยืนยันที่ปลอดภัยทางการเข้ารหัสต่อ public key ของเขา หากเขาเปิดเผยกุญแจในภายหลัง และเราตรวจสอบว่ามันให้ผลการยืนยันเดียวกันกับที่เขาให้เราก่อนหน้านี้ เราสามารถมั่นใจได้ว่ามันเป็นกุญแจเดียวกันที่ใช้สร้างการยืนยันก่อนหน้านี้ ฟังก์ชันแฮช SHA256 ถือว่าปลอดภัยมากและให้ผลลัพธ์ 256 บิต (32 ไบต์) น้อยกว่าครึ่งหนึ่งของขนาด public key ของบิทคอยน์ดั้งเดิม แต่อย่างไรก็ตาม มีฟังก์ชันแฮชอื่นๆ ที่ปลอดภัยน้อยกว่าเล็กน้อยที่ให้ผลลัพธ์ขนาดเล็กกว่า เช่น ฟังก์ชันแฮช RIPEMD-160 ซึ่งให้ผลลัพธ์ 160 บิต (20 ไบต์) ด้วยเหตุผลที่ซาโตชิ นาคาโมโตะไม่เคยระบุ เวอร์ชันดั้งเดิมของบิทคอยน์สร้างการยืนยันต่อ public key โดยการแฮชกุญแจด้วย SHA256 ก่อน แล้วแฮชผลลัพธ์นั้นด้วย RIPEMD-160 ซึ่งให้การยืนยันขนาด 20 ไบต์ต่อ public key เราสามารถดูสิ่งนี้ตามอัลกอริทึม เริ่มจากกุญแจสาธารณะ K เราคำนวณแฮช SHA256 และคำนวณแฮช RIPEMD-160 ของผลลัพธ์ ซึ่งให้ตัวเลข 160 บิต (20 ไบต์): A = RIPEMD160(SHA256(K)) โดย K คือ public key และ A คือผลลัพธ์ ทีนี้เราคงเข้าใจวิธีสร้างการยืนยันต่อ public key แล้ว ต่อไปเราจะมาดูวิธีการ ใช้งานโดยพิจารณาสคริปต์เอาต์พุตต่อไปนี้: ``` OP_DUP OP_HASH160 <Bob's commitment> OP_EQUAL OP_CHECKSIG ``` และสคริปต์อินพุตต่อไปนี้: ``` <Bob's signature> <Bob's public key> ``` และเมื่อเรารวมมันเข้าด้วยกันเราจะได้ผลลัพธ์ดังนี้: ``` <Bob's signature> <Bob's public key> OP_DUP OP_HASH160 <Bob's commitment> OP_EQUAL OP_CHECKSIG ``` จากนั้น เราเริ่มวางรายการลงในสแต็ก ลายเซ็นของบ็อบถูกวางก่อน จากนั้น public key ของเขาถูกวางไว้ด้านบน จากนั้นดำเนินการ OP_DUP เพื่อทำสำเนารายการบนสุด ดังนั้นรายการบนสุดและรายการที่สองจากบนในสแต็กตอนนี้เป็น public key ของบ็อบทั้งคู่ การดำเนินการ OP_HASH160 ใช้ (ลบ) public key บนสุดและแทนที่ด้วยผลลัพธ์ของการแฮชด้วย RIPEMD160(SHA256(K)) ดังนั้นตอนนี้บนสุดของสแต็กคือแฮชของ public key ของบ็อบ ต่อไป commitment ถูกเพิ่มไว้บนสุดของสแต็ก การดำเนินการ OP_EQUALVERIFY ใช้รายการสองรายการบนสุดและตรวจสอบว่าพวกมันเท่ากัน ซึ่งควรเป็นเช่นนั้นหาก public key ที่บ็อบให้ในสคริปต์อินพุตเป็น public key เดียวกันกับที่ใช้สร้างการยืนยันในสคริปต์เอาต์พุตที่อลิซจ่าย หาก OP_EQUALVERIFY ล้มเหลว ทั้งสคริปต์จะล้มเหลว สุดท้าย เราเหลือสแต็กที่มีเพียงลายเซ็นของบ็อบและ public key ของเขา รหัสปฏิบัติการ OP_CHECKSIG ตรวจสอบว่าพวกมันสอดคล้องกัน ดังรูปที่แสดงด้านล่าง image แม้กระบวนการของการ pay-to-publickey-hash(P2PKH) อาจดูซับซ้อน แต่มันทำให้การที่อลิซจ่ายเงินให้บ็อบมีเพียงการยืนยันเพียง 20 ไบต์ต่อ public key ของเขาแทนที่จะเป็นตัวกุญแจเอง ซึ่งจะมีขนาด 65 ไบต์ในเวอร์ชันดั้งเดิมของบิทคอยน์ นั่นเป็นข้อมูลที่น้อยกว่ามากที่บ็อบต้องสื่อสารกับอลิซ แต่อย่างไรก็ตาม เรายังไม่ได้พูดถึงวิธีที่บ็อบรับ 20 ไบต์เหล่านั้นจากกระเป๋าเงินบิทคอยน์ของเขาไปยังกระเป๋าเงินของอลิซ มีการเข้ารหัสค่าไบต์ที่ใช้กันอย่างแพร่หลาย เช่น เลขฐานสิบหก แต่ข้อผิดพลาดใด ๆ ในการคัดลอกการยืนยันจะทำให้บิทคอยน์ถูกส่งไปยังเอาต์พุตที่ไม่สามารถใช้จ่ายได้ ทำให้พวกมันสูญหายไปตลอดกาล โดยในส่วนถัดไป เราจะดูที่การเข้ารหัสแบบกะทัดรัดและการตรวจสอบความถูกต้อง #siamstr #righttech อยากแชร์ไปให้คนที่ไม่ได้อยู่บน Nostr อ่านอย่างงั้นเหรอ !?!?!?!? งั้นทางเราขอแนะนำ:
สรุป เสริม เติมแต่ง เนื้อหาของ RightTech ep.2 Public Key Cryptography (การเข้ารหัสของ public key) ระบบเข้ารหัสของ public key ถูกคิดค้นขึ้นในทศวรรษ 1970 มาจากรากฐานทางคณิตศาสตร์สำหรับความปลอดภัยของคอมพิวเตอร์และข้อมูลสมัยใหม่ นับตั้งแต่การคิดค้นระบบเข้ารหัส public key ได้มีการค้นพบฟังก์ชันทางคณิตศาสตร์ที่เหมาะสมหลายอย่าง เช่น การยกกำลังของจำนวนเฉพาะและการคูณของเส้นโค้งวงรี โดยฟังก์ชันทางคณิตศาสตร์เหล่านี้สามารถคำนวณได้ง่ายในทิศทางหนึ่ง แต่เป็นไปไม่ได้ที่จะคำนวณในทิศทางตรงกันข้ามโดยใช้คอมพิวเตอร์และอัลกอริทึมที่มีอยู่ในปัจจุบัน จากฟังก์ชันทางคณิตศาสตร์เหล่านี้ การเข้ารหัสลับช่วยให้สามารถสร้างลายเซ็นดิจิทัลที่ไม่สามารถปลอมแปลงได้และบิตคอยน์ได้ใช้การบวกและการคูณของเส้นโค้งวงรีเป็นพื้นฐานสำหรับการเข้ารหัสลับของมัน ในบิตคอยน์ เราสามารถใช้ระบบเข้ารหัส public key เพื่อสร้างคู่กุญแจที่ควบคุมการเข้าถึงบิตคอยน์ คู่กุญแจประกอบด้วย private key และ public key ที่ได้มาจาก private key public keyใช้สำหรับรับเงิน และ private key ใช้สำหรับลงนามในธุรกรรมเพื่อใช้จ่ายเงิน ความสัมพันธ์ทางคณิตศาสตร์ระหว่าง public key และ private key ที่ช่วยให้ private key สามารถใช้สร้างลายเซ็นบนข้อความได้ ลายเซ็นเหล่านี้สามารถตรวจสอบความถูกต้องกับ public key ได้โดยไม่เปิดเผย private key TIP: ในการใช้งานซอฟแวร์กระเป๋าเงินบิตคอยน์บสงอัน จะทำการเก็บ private key และ public key ถูกเก็บไว้ด้วยกันในรูปแบบคู่กุญแจเพื่อความสะดวก แต่อย่างไรก็ตาม public key สามารถคำนวณได้จาก private key ดังนั้นการเก็บเพียง private key เท่านั้นก็เป็นไปได้เช่นกัน bitcoin wallet มักจะทำการรวบรวมคู่กุญแต่ละคู่ ซึ่งจะประกอบไปด้วย private key และ public key โดย private key จะเป็นตัวเลขที่ถูกสุ่มเลือกขึ้นมา และเราขะใช้เส้นโค้งวงรี ซึ่งเป็นฟังก์ชันการเข้ารหัสทางเดียว เพื่อสร้าง public key ขึ้นมา ทำไมจึงใช้การเข้ารหัสแบบอสมมาตร ทำไมการเข้ารหัสแบบอสมมาตรจึงถูกใช้บิตคอยน์? มันไม่ได้ถูกใช้เพื่อ "เข้ารหัส" (ทำให้เป็นความลับ) ธุรกรรม แต่คุณสมบัติที่มีประโยชน์ของการเข้ารหัสแบบอสมมาตรคือความสามารถในการสร้าง ลายเซ็นดิจิทัล private key สามารถนำไปใช้กับธุรกรรมเพื่อสร้างลายเซ็นเชิงตัวเลข ลายเซ็นนี้สามารถสร้างได้เฉพาะโดยผู้ที่มีความเกี่ยวข้องกับ private key เท่านั้น แต่อย่างไรก็ตาม ทุกคนที่สามารถเข้าถึง public key และธุรกรรมสามารถใช้สิ่งเหล่านี้เพื่อ ตรวจสอบ ลายเซ็นได้ คุณสมบัติที่มีประโยชน์นี้ของการเข้ารหัสแบบอสมมาตรทำให้ทุกคนสามารถตรวจสอบลายเซ็นทุกรายการในทุกธุรกรรมได้ ในขณะที่มั่นใจว่าเฉพาะเจ้าของ private key เท่านั้นที่สามารถสร้างลายเซ็นที่ถูกต้องได้ Private Keys private key เป็นเพียงตัวเลขที่ถูกสุ่มขึ้น และการควบคุม private key ก็เป็นรากฐานสำคัญที่ทำให้เจ้าชองกุญแจดอกนี้สามารถควบคุมบิตคอยน์ทั้งหมดที่มีความเกี่ยวข้องกับ public key ที่คู่กัน private key นั้นใช้ในการสร้างลายเซ็นดิจิทัลที่ใช้ในการเคลื่อนย้ายบิตคอยน์ เราจำเป็นต้องเก็บ private key ให้เป็นความลับตลอดเวลา เพราะการเปิดเผยมันให้กับบุคคลอื่นนั้นก็เปรียบเสมือนกับการนำอำนาจในการควบคุมบิตคอยน์ไปให้แก่เขา นอกจากนี้ private key ยังจำเป็นต้องได้รับการสำรองข้อมูลและป้องกันจากการสูญหายโดยไม่ตั้งใจ เพราะหากเราได้ทำมันสูญหายไป จะไม่สามารถกู้คืนได้ และบิตคอยน์เหล่านั้นจะถูกปกป้องโดยกุญแจที่หายไปนั้นตลอดกาลเช่นกัน TIP: private key ของบิตคอยน์นั้นเป็นเพียงแค่ตัวเลข คุณสามารถสร้างมันได้โดยใช้เพียงเหรียญ ดินสอ และกระดาษ โดยการโยนเหรียญเพียง 256 ครั้งจะทำให้คุณได้เลขฐานสองที่สามารถใช้เป็น private key ของบิตคอยน์ จากนั้นคุณสามารถใช้มันในการคำนวณหา public key แต่อย่างไรก็ตาม โปรดระมัดระวังเกี่ยวกับการเลือใช้วิธีการสุ่มที่ไม่สมบูรณ์ เพราะนั่นอาจลดความปลอดภัยของ private key และบิตคอยน์ที่มัมปกป้องอยู่อย่างมีนัยสำคัญ ขั้นตอนแรกและสำคัญที่สุดในการสร้างกุญแจคือการหาแหล่งที่มาของความสุ่มที่ปลอดภัย (ซึ่งเรียกว่า เอนโทรปี) การสร้างกุญแจของบิตคอยน์นั้นเกือบเหมือนกับ "เลือกตัวเลขระหว่าง 1 และ 2^256" ซึ่งวิธีที่แน่นอนที่คุณใช้ในการเลือกตัวเลขนั้นไม่สำคัญตราบใดที่มันไม่สามารถคาดเดาหรือทำซ้ำได้ โดยปกติแล้วซอฟต์แวร์ของบิตคอยน์มักจะใช้ตัวสร้างตัวเลขสุ่มที่มีความปลอดภัยทางการเข้ารหัสเพื่อสร้างเอนโทรปี 256 บิต สิ่งที่สำคัญในเรื่องนี้คือ private key สามารถเป็นตัวเลขใดๆ ระหว่าง 0 และ n - 1 (รวมทั้งสองค่า) โดยที่ n เป็นค่าคงที่ (n = 1.1578 × 10^77 ซึ่งน้อยกว่า 2^256 เล็กน้อย) ซึ่งกำหนดอยู่ใน elliptic curve ที่ใช้ใน Bitcoin ในการสร้างกุญแจดังกล่าว เราสุ่มเลือกเลขขนาด 256 บิตและตรวจสอบว่ามันน้อยกว่า n ในแง่ของการเขียนโปรแกรม โดยปกติแล้วสิ่งนี้ทำได้โดยการป้อนสตริงของบิตสุ่มที่ใหญ่กว่า ซึ่งรวบรวมจากแหล่งที่มาของความสุ่มที่มีความปลอดภัยทางการเข้ารหัส เข้าไปในอัลกอริทึมแฮช SHA256 ซึ่งจะสร้างค่าขนาด 256 บิตที่สามารถตีความเป็นตัวเลขได้อย่างสะดวก หากผลลัพธ์น้อยกว่า n เราจะได้กุญแจส่วนตัวที่เหมาะสม มิฉะนั้น เราก็เพียงแค่ลองอีกครั้งด้วยตัวเลขสุ่มอื่น คำเตือน: อย่าเขียนโค้ดของคุณเองเพื่อสร้างตัวเลขสุ่ม หรือใช้ตัวสร้างตัวเลขสุ่ม "แบบง่าย" ที่มีให้ในภาษาโปรแกรมของคุณ ใช้ตัวสร้างตัวเลขสุ่มเทียมที่มีความปลอดภัยทางการเข้ารหัส (CSPRNG) จากแหล่งที่มีเอนโทรปีเพียงพอ ศึกษาเอกสารของไลบรารีตัวสร้างตัวเลขสุ่มที่คุณเลือกเพื่อให้มั่นใจว่ามีความปลอดภัยทางการเข้ารหัส การใช้งาน CSPRNG ที่ถูกต้องมีความสำคัญอย่างยิ่งต่อความปลอดภัยของกุญแจ ต่อไปนี้คือกุญแจส่วนตัว (k) ที่สร้างขึ้นแบบสุ่มซึ่งแสดงในรูปแบบเลขฐานสิบหก (256 บิตแสดงเป็น 64 หลักเลขฐานสิบหก โดยแต่ละหลักคือ 4 บิต): ``` 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD ``` TIP: จำนวนที่เป็นไปได้ของ private key ทั้งหมดนั้นมีอยู่ 2^256 เป็นตัวเลขที่ใหญ่มากจนยากจะจินตนาการได้ มันมีค่าประมาณ 10^77 (เลข 1 ตามด้วยเลข 0 อีก 77 ตัว) ในระบบเลขฐานสิบ เพื่อให้เข้าใจง่ายขึ้น ลองเปรียบเทียบกับจักรวาลที่เรามองเห็นได้ซึ่งนักวิทยาศาสตร์ประมาณการว่ามีอะตอมทั้งหมดประมาณ 10^80 อะตอม นั่นหมายความว่าช่วงค่าของกุญแจส่วนตัว Bitcoin มีขนาดใกล้เคียงกับจำนวนอะตอมทั้งหมดในจักรวาลที่เรามองเห็นได้ การอธิบายเกี่ยวกับวิทยาการเข้ารหัสแบบเส้นโค้งวงรี (Elliptic Curve Cryptography) วิทยาการเข้ารหัสแบบเส้นโค้งวงรี (ECC) เป็นประเภทหนึ่งของการเข้ารหัสแบบอสมมาตรหรือ public key ซึ่งอาศัยหลักการของปัญหาลอการิทึมแบบไม่ต่อเนื่อง โดยแสดงออกผ่านการบวกและการคูณบนจุดต่างๆ ของเส้นโค้งวงรี image บิตคอยน์ใช้เส้นโค้งวงรีเฉพาะและชุดค่าคงที่ทางคณิตศาสตร์ ตามที่กำหนดไว้ในมาตรฐานที่เรียกว่า secp256k1 ซึ่งกำหนดโดยสถาบันมาตรฐานและเทคโนโลยีแห่งชาติ (NIST) เส้นโค้ง secp256k1 ถูกกำหนดโดยฟังก์ชันต่อไปนี้ ซึ่งสร้างเส้นโค้งวงรี: y² = (x³ + 7) บนฟิลด์จำกัด (F_p) หรือ y² mod p = (x³ + 7) mod p โดยที่ mod p (มอดูโลจำนวนเฉพาะ p) แสดงว่าเส้นโค้งนี้อยู่บนฟิลด์จำกัดของอันดับจำนวนเฉพาะ p ซึ่งเขียนได้เป็น F_p โดย p = 2^256 – 2^32 – 2^9 – 2^8 – 2^7 – 2^6 – 2^4 – 1 ซึ่งเป็นจำนวนเฉพาะที่มีค่ามหาศาล บิตคอยน์ใช้เส้นโค้งวงรีที่ถูกนิยามบนฟิลด์จำกัดของอันดับจำนวนเฉพาะแทนที่จะอยู่บนจำนวนจริง ทำให้มันมีลักษณะเหมือนรูปแบบของจุดที่กระจัดกระจายในสองมิติ ซึ่งทำให้ยากต่อการจินตนาการภาพ อย่างไรก็ตาม คณิตศาสตร์ที่ใช้นั้นเหมือนกับเส้นโค้งวงรีบนจำนวนจริง ตัวอย่างเช่น การเข้ารหัสลับด้วยเส้นโค้งวงรี: การแสดงภาพเส้นโค้งวงรีบน F(p) โดยที่ p=17 แสดงเส้นโค้งวงรีเดียวกันบนฟิลด์จำกัดของอันดับจำนวนเฉพาะ 17 ที่มีขนาดเล็กกว่ามาก ซึ่งแสดงรูปแบบของจุดบนตาราง เส้นโค้งวงรี secp256k1 ที่ใช้ในบิตคอยน์สามารถนึกถึงได้ว่าเป็นรูปแบบของจุดที่ซับซ้อนมากกว่าบนตารางที่มีขนาดใหญ่มหาศาลจนยากจะเข้าใจได้ image ตัวอย่างเช่น จุด P ที่มีพิกัด (x, y) ต่อไปนี้เป็นจุดที่อยู่บนเส้นโค้ง secp256k1: ``` P = (55066263022277343669578718895168534326250603453777594175500187360389116729240, 32670510020758816978083085130507043184471273380659243275938904335757337482424) ``` เราสามารถใช้ Python เพื่อยืนยันว่าจุดนี้อยู่บนเส้นโค้งวงรีได้ตามตัวอย่างนี้: ตัวอย่างที่ 1: การใช้ Python เพื่อยืนยันว่าจุดนี้อยู่บนเส้นโค้งวงรี ``` Python 3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0] on linux Type "help", "copyright", "credits" or "license" for more information. > p = 115792089237316195423570985008687907853269984665640564039457584007908834671663 > x = 55066263022277343669578718895168534326250603453777594175500187360389116729240 > y = 32670510020758816978083085130507043184471273380659243275938904335757337482424 > (x ** 3 + 7 - y**2) % p 0 ``` ผลลัพธ์เป็น 0 ซึ่งแสดงว่าจุดนี้อยู่บนเส้นโค้งวงรีจริง เพราะเมื่อแทนค่า x และ y ลงในสมการ y² = (x³ + 7) mod p แล้ว ทั้งสองด้านของสมการมีค่าเท่ากัน ในคณิตศาสตร์ของเส้นโค้งวงรี มีจุดที่เรียกว่า "จุดที่อนันต์" (point at infinity) ซึ่งมีบทบาทคล้ายกับศูนย์ในการบวก บนคอมพิวเตอร์ บางครั้งจุดนี้แทนด้วย x = y = 0 (ซึ่งไม่เป็นไปตามสมการเส้นโค้งวงรี แต่เป็นกรณีพิเศษที่สามารถตรวจสอบได้ง่าย) มีตัวดำเนินการ + ที่เรียกว่า "การบวก" ซึ่งมีคุณสมบัติคล้ายกับการบวกแบบดั้งเดิมของจำนวนจริงที่เด็กๆ เรียนในโรงเรียน เมื่อมีจุดสองจุด P1 และ P2 บนเส้นโค้งวงรี จะมีจุดที่สาม P3 = P1 + P2 ซึ่งอยู่บนเส้นโค้งวงรีเช่นกัน ในเชิงเรขาคณิต จุดที่สาม P3 นี้คำนวณได้โดยการลากเส้นระหว่าง P1 และ P2 เส้นนี้จะตัดกับเส้นโค้งวงรีที่จุดเพิ่มเติมอีกหนึ่งจุดพอดี เรียกจุดนี้ว่า P3' = (x, y) จากนั้นให้สะท้อนกับแกน x เพื่อได้ P3 = (x, -y) มีกรณีพิเศษบางกรณีที่อธิบายความจำเป็นของ "จุดที่อนันต์": 1. ถ้า P1 และ P2 เป็นจุดเดียวกัน เส้น "ระหว่าง" P1 และ P2 ควรขยายเป็นเส้นสัมผัสกับเส้นโค้ง ณ จุด P1 นี้ เส้นสัมผัสนี้จะตัดกับเส้นโค้งที่จุดใหม่อีกหนึ่งจุดพอดี คุณสามารถใช้เทคนิคจากแคลคูลัสเพื่อหาความชันของเส้นสัมผัส เทคนิคเหล่านี้ใช้ได้อย่างน่าแปลกใจ แม้ว่าเราจะจำกัดความสนใจไว้ที่จุดบนเส้นโค้งที่มีพิกัดเป็นจำนวนเต็มเท่านั้น! 2. ในบางกรณี (เช่น ถ้า P1 และ P2 มีค่า x เดียวกันแต่ค่า y ต่างกัน) เส้นสัมผัสจะตั้งฉากพอดี ซึ่งในกรณีนี้ P3 = "จุดที่อนันต์" 3. ถ้า P1 เป็น "จุดที่อนันต์" แล้ว P1 + P2 = P2 ในทำนองเดียวกัน ถ้า P2 เป็นจุดที่อนันต์ แล้ว P1 + P2 = P1 นี่แสดงให้เห็นว่าจุดที่อนันต์มีบทบาทเป็นศูนย์ การบวกนี้มีคุณสมบัติเชิงสมาคม (associative) ซึ่งหมายความว่า (A + B) + C = A + (B + C) นั่นหมายความว่าเราสามารถเขียน A + B + C โดยไม่ต้องมีวงเล็บและไม่มีความกำกวม เมื่อเรานิยามการบวกแล้ว เราสามารถนิยามการคูณในแบบมาตรฐานที่ต่อยอดจากการบวก สำหรับจุด P บนเส้นโค้งวงรี ถ้า k เป็นจำนวนเต็มบวก แล้ว kP = P + P + P + … + P (k ครั้ง) โปรดทราบว่า k บางครั้งถูกเรียกว่า "เลขชี้กำลัง" Public Keys ในระบบคริปโตกราฟีแบบเส้นโค้งวงรี (Elliptic Curve Cryptography) public key ถูกคำนวณจาก private key โดยใช้การคูณเส้นโค้งวงรี ซึ่งเป็นกระบวนการที่ไม่สามารถย้อนกลับได้: K = k × G โดยที่: - k คือ private key - G คือจุดคงที่ที่เรียกว่า จุดกำเนิด (generator point) - K คือ public key การดำเนินการย้อนกลับ ที่เรียกว่า "การหาลอการิทึมแบบไม่ต่อเนื่อง" (finding the discrete logarithm) - คือการคำนวณหา k เมื่อรู้ค่า K - เป็นสิ่งที่ยากมากเทียบเท่ากับการลองค่า k ทุกค่าที่เป็นไปได้ (วิธีการแบบ brute-force) ความยากของการย้อนกลับนี้คือหลักการความปลอดภัยหลักของระบบ ECC ที่ใช้ในบิตคอยน์ ซึ่งทำให้สามารถเผยแพร่ public key ได้อย่างปลอดภัย โดยที่ไม่ต้องกังวลว่าจะมีใครสามารถคำนวณย้อนกลับเพื่อหา private key ได้ TIP:การคูณเส้นโค้งวงรีเป็นฟังก์ชันประเภทที่นักเข้ารหัสลับเรียกว่า “ trap door function ”: - เป็นสิ่งที่ทำได้ง่ายในทิศทางหนึ่ง - แต่เป็นไปไม่ได้ที่จะทำในทิศทางตรงกันข้าม คนที่มี private key สามารถสร้าง public key ได้อย่างง่ายดาย และสามารถแบ่งปันกับโลกได้โดยรู้ว่าไม่มีใครสามารถย้อนกลับฟังก์ชันและคำนวณ private key จาก public key ได้ กลวิธีทางคณิตศาสตร์นี้กลายเป็นพื้นฐานสำหรับลายเซ็นดิจิทัลที่ปลอมแปลงไม่ได้และมีความปลอดภัย ซึ่งใช้พิสูจน์การควบคุมเงินบิตคอยน์ เริ่มต้นด้วยการใช้ private key ในรูปแบบของตัวเลขสุ่ม เราคูณมันด้วยจุดที่กำหนดไว้ล่วงหน้าบนเส้นโค้งที่เรียกว่า จุดกำเนิด (generator point) เพื่อสร้างจุดอื่นที่อยู่บนเส้นโค้งเดียวกัน ซึ่งคำตอบจะเป็น public key ที่สอดคล้องกัน จุดกำเนิดถูกกำหนดไว้เป็นส่วนหนึ่งของมาตรฐาน secp256k1 และเป็นค่าเดียวกันสำหรับกุญแจทั้งหมดในระบบบิตคอยน์ เนื่องจากจุดกำเนิด G เป็นค่าเดียวกันสำหรับผู้ใช้บิตคอยน์ทุกคน private key (k) ที่คูณกับ G จะได้ public key (K) เดียวกันเสมอ ความสัมพันธ์ระหว่าง k และ K เป็นแบบตายตัวแต่สามารถคำนวณได้ในทิศทางเดียวเท่านั้น คือจาก k ไปยัง K นี่คือเหตุผลที่ public key ของบิตคอยน์ (K) สามารถแบ่งปันกับทุกคนได้โดยไม่เปิดเผย private key (k) ของผู้ใช้ TIP: private key สามารถแปลงเป็น public key ได้ แต่ public key ไม่สามารถแปลงกลับเป็น private key ได้ เพราะคณิตศาสตร์ที่ใช้ทำงานได้เพียงทิศทางเดียวเท่านั้น เมื่อนำการคูณเส้นโค้งวงรีมาใช้งาน เราจะนำ private key (k) ที่สร้างขึ้นก่อนหน้านี้มาคูณกับจุดกำเนิด G เพื่อหา public key (K): ``` K = 1E99423A4ED27608A15A2616A2B0E9E52CED330AC530EDCC32C8FFC6A526AEDD × G ``` public key (K) จะถูกกำหนดเป็นจุด K = (x, y) โดยที่: ``` x = F028892BAD7ED57D2FB57BF33081D5CFCF6F9ED3D3D7F159C2E2FFF579DC341A y = 07CF33DA18BD734C600B96A72BBC4749D5141C90EC8AC328AE52DDFE2E505BDB ``` เพื่อจะให้เห็นภาพของการคูณจุดด้วยจำนวนเต็มมากขึ้น เราจะใช้เส้นโค้งวงรีที่ง่ายกว่าบนจำนวนจริง (โดยหลักการทางคณิตศาสตร์ยังคงเหมือนกัน) เป้าหมายของเราคือการหาผลคูณ kG ของจุดกำเนิด G ซึ่งเทียบเท่ากับการบวก G เข้ากับตัวเอง k ครั้งติดต่อกัน ในเส้นโค้งวงรี การบวกจุดเข้ากับตัวเองเทียบเท่ากับการลากเส้นสัมผัสที่จุดนั้นและหาว่าเส้นนั้นตัดกับเส้นโค้งอีกครั้งที่จุดใด จากนั้นจึงสะท้อนจุดนั้นบนแกน x การเข้ารหัสลับด้วยเส้นโค้งวงรี: การแสดงภาพการคูณจุด G ด้วยจำนวนเต็ม k บนเส้นโค้งวงรี แสดงกระบวนการในการหา G, 2G, 4G เป็นการดำเนินการทางเรขาคณิตบนเส้นโค้งได้ดังนี้ TIP: ในซอฟแวร์ของบิตคอยน์ส่วนใหญ่ใช้ไลบรารีเข้ารหัสลับ libsecp256k1 เพื่อทำการคำนวณทางคณิตศาสตร์เส้นโค้งวงรี image #siamstr #righttech อยากแชร์ไปให้คนที่ไม่ได้อยู่บน Nostr อ่านอย่างงั้นเหรอ !?!?!?!? งั้นทางเราขอแนะนำ:
Bitcoin Core API Bitcoin Core ใช้อินเทอร์เฟซ JSON-RPC ซึ่งสามารถเข้าถึงได้โดยใช้เครื่องมืออย่าง bitcoin-cli ซึ่งช่วยให้เราสามารถทดลองใช้งานความสามารถต่างๆ แบบโต้ตอบได้ ซึ่งความสามารถเหล่านี้ยังสามารถใช้งานได้ผ่านทาง API ในรูปแบบโปรแกรม เพื่อเริ่มต้น ให้เรียกใช้คำสั่ง help เพื่อดูรายการคำสั่ง Bitcoin Core RPC ที่มีอยู่: ``` $ bitcoin-cli help +== Blockchain == getbestblockhash getblock "blockhash" ( verbosity ) getblockchaininfo ... walletpassphrase "passphrase" timeout walletpassphrasechange "oldpassphrase" "newpassphrase" walletprocesspsbt "psbt" ( sign "sighashtype" bip32derivs finalize ) ``` คำสั่งแต่ละรายการอาจต้องการพารามิเตอร์หลายตัว เพื่อรับความช่วยเหลือเพิ่มเติม คำอธิบายโดยละเอียด และข้อมูลเกี่ยวกับพารามิเตอร์ต่างๆ ให้เพิ่มชื่อคำสั่งหลังคำว่า help ตัวอย่างเช่น เพื่อดูความช่วยเหลือเกี่ยวกับคำสั่ง RPC getblockhash: ``` $ bitcoin-cli help getblockhash getblockhash height Returns hash of block in best-block-chain at height provided. Arguments: 1. height (numeric, required) The height index Result: "hex" (string) The block hash Examples: > bitcoin-cli getblockhash 1000 > curl --user myusername --data-binary '{"jsonrpc": "1.0", "id": "curltest", "method": "getblockhash", "params": [1000]}' -H 'content-type: text/plain;' http://127.0.0.1:8332/ ``` ในส่วนท้ายของข้อมูลคำสั่ง help คุณจะเห็นตัวอย่างสองตัวอย่างของคำสั่ง RPC ซึ่งใช้ตัวช่วย bitcoin-cli หรือ HTTP client curl ตัวอย่างเหล่านี้แสดงให้เห็นว่าคุณอาจเรียกใช้คำสั่งได้อย่างไร ลองคัดลอกตัวอย่างแรกและดูผลลัพธ์: ``` $ bitcoin-cli getblockhash 1000 00000000c937983704a73af28acdec37b049d214adbda81d7e2a3dd146f6ed09 ``` ผลลัพธ์คือแฮชของบล็อก ซึ่งจะอธิบายในรายละเอียดเพิ่มเติมในบทต่อไป แต่ในตอนนี้ คำสั่งนี้ควรให้ผลลัพธ์เหมือนกันบนระบบของคุณ ซึ่งแสดงให้เห็นว่าโหนด Bitcoin Core ของคุณกำลังทำงาน กำลังรับคำสั่ง และมี ข้อมูลเกี่ยวกับบล็อก 1,000 ที่จะส่งกลับมาให้คุณ การรับข้อมูลสถานะของ Bitcoin Core Bitcoin Core ให้รายงานสถานะเกี่ยวกับโมดูลต่างๆ ผ่านอินเตอร์เฟส JSON-RPC คำสั่งที่สำคัญที่สุดรวมถึง getblockchaininfo, getmempoolinfo, getnetworkinfo และ getwalletinfo คำสั่ง RPC getblockchaininfo ของ Bitcoin ได้ถูกแนะนำไปก่อนหน้านี้แล้ว คำสั่ง getnetworkinfo แสดงข้อมูลพื้นฐานเกี่ยวกับสถานะของโหนดเครือข่าย Bitcoin ใช้ bitcoin-cli เพื่อรันคำสั่งนี้: ``` $ bitcoin-cli getnetworkinfo { "version": 240001, "subversion": "/Satoshi:24.0.1/", "protocolversion": 70016, "localservices": "0000000000000409", "localservicesnames": [ "NETWORK", "WITNESS", "NETWORK_LIMITED" ], "localrelay": true, "timeoffset": -1, "networkactive": true, "connections": 10, "connections_in": 0, "connections_out": 10, "networks": [ "...detailed information about all networks..." ], "relayfee": 0.00001000, "incrementalfee": 0.00001000, "localaddresses": [ ], "warnings": "" } ``` ซึ่งข้อมูลต่าง ๆ จะถูกส่งคืนในรูปแบบ JavaScript Object Notation (JSON) ซึ่งเป็นรูปแบบที่สามารถ "อ่าน" ได้อย่างง่ายดายโดยทุกภาษาโปรแกรมมิ่ง และยังเป็นรูปแบบที่มนุษย์อ่านได้ง่ายอีกด้วย ในข้อมูลนี้เราเห็นหมายเลขเวอร์ชันสำหรับซอฟต์แวร์ Bitcoin Core และโปรโตคอลบิตคอยน์เราเห็นจำนวนการเชื่อมต่อในปัจจุบันและข้อมูลต่างๆ เกี่ยวกับเครือข่ายบิตคอยน์และการตั้งค่าที่เกี่ยวข้องกับโหนดนี้ TIP: จะใช้เวลาสักระยะ อาจมากกว่าหนึ่งวัน สำหรับ bitcoind ในการอัพเดทให้ทันกับบล็อกล่าสุดของบล็อกเชนปัจจุบัน ในขณะที่มันดาวน์โหลดบล็อกจากโหนดอื่นๆ และตรวจสอบความถูกต้องของทุกธุรกรรมในบล็อกเหล่านั้น—ซึ่งมีเกือบหนึ่งพันล้านธุรกรรม ณ เวลาที่เขียนนี้ คุณสามารถตรวจสอบความคืบหน้าโดยใช้ getblockchaininfo เพื่อดูจำนวนบล็อกที่ทราบ ตัวอย่างในส่วนที่เหลือของบทนี้สมมติว่าคุณอยู่อย่างน้อยที่บล็อก 775,072 เนื่องจากความปลอดภัยของธุรกรรมขึ้นอยู่กับจำนวนบล็อก และข้อมูลบางส่วนในตัวอย่างต่อไปนี้อาจเปลี่ยนแปลงเล็กน้อยขึ้นอยู่กับจำนวนบล็อกที่โหนดของคุณมี อยากแชร์ไปให้คนที่ไม่ได้อยู่บน Nostr อ่านอย่างงั้นเหรอ !?!?!?!? งั้นทางเราขอแนะนำ: #siamstr
มาลองรัน Bitcoin node กันเถอะ อย่างที่ได้กล่าวในบทก่อนหน้า เครือข่ายแบบเพียร์ทูเพียร์ของบิตคอยน์ประกอบด้วยเครือข่าย "โหนด" ซึ่งส่วนใหญ่รันโดยบุคคลและธุรกิจบางแห่งที่ให้บริการ ผู้ที่รันโหนดบิตคอยน์จะมีมุมมองที่ตรงและน่าเชื่อถือเกี่ยวกับบล๊อกเชนของบิตคอยน์พร้อมสำเนาข้อมูลบิตคอยน์ที่ใช้จ่ายได้ทั้งหมดซึ่งได้รับการตรวจสอบอย่างอิสระโดยระบบของตนเอง การรันโหนดทำให้คุณไม่ต้องพึ่งบุคคลที่สามในการตรวจสอบธุรกรรม นอกจากนี้การใช้โหนดบิตคอยน์เพื่อตรวจสอบธุรกรรมที่ได้รับในกระเป๋าเงินของคุณ ยังช่วยให้คุณมีส่วนร่วมในเครือข่ายบิตคอยน์และช่วยทำให้เครือข่ายมีความแข็งแกร่งมากขึ้นอีกด้วย การรันโหนดต้องดาวน์โหลดและประมวลผลข้อมูลมากกว่า 500 GB ในช่วงเริ่มแรก และประมาณ 400 MB ของธุรกรรม Bitcoin ต่อวัน ตัวเลขเหล่านี้เป็นของปี 2023 และอาจเพิ่มขึ้นในอนาคต หากคุณปิดโหนดหรือหลุดจากอินเทอร์เน็ตเป็นเวลาหลายวัน โหนดของคุณจะต้องดาวน์โหลดข้อมูลที่พลาดไป ตัวอย่างเช่น หากคุณปิด Bitcoin Core เป็นเวลา 10 วัน คุณจะต้องดาวน์โหลดประมาณ 4 GB ในครั้งถัดไปที่คุณเริ่มใช้งาน ขึ้นอยู่กับการเลือกของคุณว่าจะทำดัชนีธุรกรรมทั้งหมดและเก็บสำเนาบล๊อกเชนแบบเต็ม คุณอาจต้องใช้พื้นที่ดิสก์มาก - อย่างน้อย 1 TB หากคุณวางแผนจะรัน Bitcoin Core เป็นเวลาหลายปี โดยค่าเริ่มต้นโหนดบิตคอยน์ยังส่งธุรกรรมและบล็อกไปยังโหนดอื่น ๆ (เรียกว่า "เพียร์") ซึ่งจะใช้แบนด์วิดท์อัปโหลดอินเทอร์เน็ต หากการเชื่อมต่ออินเทอร์เน็ตของคุณมีขีดจำกัด มีขีดจำกัดการใช้ข้อมูลต่ำ หรือคิดค่าบริการตามข้อมูล (เมตเตอร์) คุณไม่ควรรันโหนดบิตคอยน์บนระบบนั้น หรือรันโดยจำกัดแบนด์วิดท์ (ดู การกำหนดค่าโหนด Bitcoin Core) คุณอาจเชื่อมต่อโหนดของคุณแทนไปยังเครือข่ายทางเลือก เช่น ผู้ให้บริการข้อมูลดาวเทียมฟรีอย่าง Blockstream Satellite Tip: Bitcoin Core เก็บสำเนาบล๊อกเชนแบบเต็ม (ตามค่าเริ่มต้น ) พร้อมธุรกรรมเกือบทั้งหมดที่เคยได้รับการยืนยันบนเครือข่าย Bitcoin ตั้งแต่เริ่มต้นในปี 2009 ชุดข้อมูลนี้มีขนาดหลายร้อย GB และจะถูกดาวน์โหลดเพิ่มขึ้นทีละน้อยในช่วงหลายชั่วโมงหรือหลายวัน ขึ้นอยู่กับความเร็ว CPU และการเชื่อมต่ออินเทอร์เน็ตของคุณ Bitcoin Core จะไม่สามารถประมวลผลธุรกรรมหรืออัปเดตยอดคงเหลือของบัญชีจนกว่าชุดข้อมูล blockchain จะดาวน์โหลดเสร็จสมบูรณ์ ตรวจสอบให้แน่ใจว่าคุณมีพื้นที่ดิสก์ แบนด์วิดท์ และเวลาเพียงพอในการซิงโครไนซ์เริ่มแรก คุณสามารถกำหนดค่า Bitcoin Core เพื่อลดขนาด blockchain โดยการทิ้งบล็อกเก่า แต่โปรแกรมยังคงดาวน์โหลดชุดข้อมูลทั้งหมด TIPจากหลาม agian: ซื้อ NVMe SSD 2TB เป็นอย่างต่ำซ่ะ m.2 ได้ยิ่งดีเลยจ้า แม้ว่าจะมีข้อกำหนดด้านทรัพยากรเหล่านี้ แต่มีผู้คนหลายพันรายที่รันโหนด Bitcoin บางคนรันบนระบบง่าย ๆ อย่าง Raspberry Pi (คอมพิวเตอร์ราคา 35 เหรียญสหรัฐที่มีขนาดเท่ากับกล่องบุหรี่) ทำไมคุณถึงอยากรันโหนด? นี่คือเหตุผลที่พบบ่อยที่สุด: - คุณไม่ต้องการพึ่งบุคคลที่สามในการตรวจสอบธุรกรรมที่คุณได้รับ คุณไม่ต้องการเปิดเผยให้บุคคลที่สามรู้ว่าธุรกรรมใดเป็นของกระเป๋าเงินคุณ - คุณกำลังพัฒนาซอฟต์แวร์ Bitcoin และต้องการพึ่งโหนด Bitcoin เพื่อเข้าถึงเครือข่ายและ blockchain ผ่าน API - คุณกำลังสร้างแอปพลิเคชันที่ต้องตรวจสอบธุรกรรมตามกฎฉันทามติของ Bitcoin โดยทั่วไป บริษัทซอฟต์แวร์ Bitcoin มักจะรันโหนดหลายโหนด - คุณต้องการสนับสนุน Bitcoin การรันโหนดที่คุณใช้ตรวจสอบธุรกรรมที่ได้รับในกระเป๋าเงินจะช่วยทำให้เครือข่ายมีความแข็งแกร่งมากขึ้น หากคุณกำลังอ่านหนังสือเล่มนี้และสนใจความปลอดภัยที่เข้มงวด ความเป็นส่วนตัวที่เหนือกว่า หรือการพัฒนาซอฟต์แวร์ Bitcoin คุณควรรันโหนดของตัวเอง การกำหนดค่าโหนด Bitcoin Core Bitcoin Core จะค้นหาไฟล์การกำหนดค่าในไดเรกทอรีข้อมูลทุกครั้งที่เริ่มทำงาน ในส่วนนี้เราจะตรวจสอบตัวเลือกการกำหนดค่าต่าง ๆ และตั้งค่าไฟล์การกำหนดค่า เพื่อค้นหาไฟล์การกำหนดค่า ให้รัน bitcoind -printtoconsole ในเทอร์มินัลของคุณ และดูบรรทัดแรก ๆ: ``` $ bitcoind -printtoconsole 2023-01-28T03:21:42Z Bitcoin Core version v24.0.1 2023-01-28T03:21:42Z Using the 'x86_shani(1way,2way)' SHA256 implementation 2023-01-28T03:21:42Z Using RdSeed as an additional entropy source 2023-01-28T03:21:42Z Using RdRand as an additional entropy source 2023-01-28T03:21:42Z Default data directory /home/harding/.bitcoin 2023-01-28T03:21:42Z Using data directory /home/harding/.bitcoin 2023-01-28T03:21:42Z Config file: /home/harding/.bitcoin/bitcoin.conf ... [a lot more debug output] ... ``` tatatipจากหลามอีกครั้ง: สังเกตเห็นหรือไม่ว่าในตัวอย่างนี้ Bitcoin Core กำลังชี้ไปที่ไฟล์การกำหนดค่าที่ไดเรกทอรี /home/harding/.bitcoin/bitcoin.conf ซึ่งจะแตกต่างกันไปขึ้นอยู่กับผู้ใช้และระบบปฏิบัติการ คุณสามารถกด Ctrl-C เพื่อปิดโหนดหลังจากที่ระบุตำแหน่งไฟล์การกำหนดค่า โดยปกติไฟล์การกำหนดค่าจะอยู่ในไดเรกทอรี .bitcoin ภายใต้โฮมไดเรกทอรีของผู้ใช้ เปิดไฟล์ configuration ด้วยโปรแกรมแก้ไขได้ตามที่คุณชอบ Bitcoin Core มีตัวเลือกการกำหนดค่ามากกว่า 100 ตัวเลือกที่สามารถปรับเปลี่ยนพฤติกรรมของโหนดเครือข่าย การจัดเก็บบล๊อกเชน และแง่มุมอื่น ๆ ของการทำงาน เพื่อดูรายการตัวเลือก ให้รัน bitcoind --help: ``` $ bitcoind --help Bitcoin Core version v24.0.1 Usage: bitcoind [options] Start Bitcoin Core Options: -? Print this help message and exit -alertnotify=<cmd> Execute command when an alert is raised (%s in cmd is replaced by message) ... [many more options] ``` นี่คือตัวเลือกที่บางประการที่คุณสามารถตั้งในไฟล์ configuration หรือเป็นพารามิเตอร์บรรทัดคำสั่งสำหรับ bitcoind: - alertnotify: เรียกใช้คำสั่งหรือสคริปต์เพื่อส่งการแจ้งเตือนฉุกเฉินไปยังเจ้าของโหนดนี้ - conf: ตำแหน่งทางเลือกสำหรับไฟล์ configuration เมื่อใช้เป็นพารามิเตอร์ cli สำหรับ bitcoind เท่านั้น เนื่องจากไม่สามารถอยู่ในไฟล์ configuration ที่มันอ้างถึงได้ - datadir: เลือกไดเรกทอรีและระบบไฟล์สำหรับจัดเก็บข้อมูลบล๊อกเชนตามค่าเริ่มต้นนี้คือไดเรกทอรีย่อย .bitcoin ในไดเรกทอรีโฮมของคุณ ขึ้นอยู่กับการกำหนดค่า สามารถใช้พื้นที่ตั้งแต่ประมาณ 10 GB ถึงเกือบ 1 TB ณ ขณะนี้ คาดว่าขนาดสูงสุดจะเพิ่มขึ้นหลายร้อย GB ต่อปี - prune: ลดความต้องการพื้นที่ดิสก์บล๊อกเชนลงเหลือกี่เมกะไบต์โดยการลบบล็อกเก่า ใช้สำหรับโหนดที่มีทรัพยากรจำกัดซึ่งไม่สามารถบรรจุบล๊อกเชนแบบเต็มได้ ส่วนอื่น ๆ ของระบบจะใช้พื้นที่ดิสก์อื่นที่ไม่สามารถตัดทอนได้ ดังนั้นคุณยังคงต้องมีพื้นที่อย่างน้อยตามที่ระบุในตัวเลือก datadir - txindex: รักษาดัชนีของธุรกรรมทั้งหมด ช่วยให้คุณสามารถดึงธุรกรรมใด ๆ โดยใช้ ID ของมันได้โดยโปรแกรม โดยที่บล็อกที่มีธุรกรรมนั้นยังไม่ถูกตัดทอน - dbcache: ขนาดของแคช UTXO ค่าเริ่มต้นคือ 450 เมบิไบต์ (MiB) เพิ่มขนาดนี้บนฮาร์ดแวร์ระดับสูงเพื่ออ่านและเขียนจากดิสก์น้อยลง หรือลดขนาดลงบนฮาร์ดแวร์ระดับต่ำเพื่อประหยัดหน่วยความจำโดยยอมให้ใช้ดิสก์บ่อยขึ้น - blocksonly: ลดการใช้แบนด์วิดท์โดยการรับเฉพาะบล็อกของธุรกรรมที่ได้รับการยืนยันจากเพียร์ แทนที่จะส่งต่อธุรกรรมที่ยังไม่ได้รับการยืนยัน - maxmempool: จำกัดพูลหน่วยความจำของธุรกรรมเป็นกี่เมกะไบต์ ใช้เพื่อลดการใช้หน่วยความจำบนโหนดที่มีหน่วยความจำจำกัด เย่ ทีนี้เราก็มีโหนดแล้ววววว -- ไม่อะยังไม่เริ่มเลย 555555 ข้อความจากหลาม agian: คือถึงผมจะสนับสนุนให้คนรันโหนดก็เถอะ แต่ถ้าจะรันโดยไม่รู้อะไรเลยก็ไม่รันซ่ะอาจจะดีกว่า อยากแชร์ไปให้คนที่ไม่ได้อยู่บน Nostr อ่านอย่างงั้นเหรอ !?!?!?!? งั้นทางเราขอแนะนำ: #siamstr